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Internal structure of colloidal aggregates
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A nonlinear model of diffusion-limited growth of three-dimensional colloidal aggregate has been developed.
The conditions of internal combination/recombination balance has been considered. Obtained solution shows
that the aggregate contains the central dense core and the surrounding loose region, in which the aggregated
particle concentration decreases as a power function, according to the fractal cluster properties. The fractal
dimensiondf has been found to be independent on physical and chemical properties of colloidal system. The
obtained universal valuedf52.5 is in a good agreement with the known experimental and numerical results.
The model may be useful for the analysis of a wide class of aggregation phenomena.
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Problems of aggregative stability of colloids and kinet
of aggregation represent one of the basic topics in col
science. Traditional approaches to the theoretical analys
aggregation processes go back to the Smoluchowski’s c
sical model@1# and are based on solution of system of kine
equations of coagulation. A lot of papers concerning the a
lytical and numerical studies of the Smoluchowski kine
system are available~see, for example,@2–4#!. Exact solu-
tions have been found for the constant coagulation ker
and the self-similar behavior has been analyzed for the v
ous dependencies of aggregation kernels on aggregate s
including those under sedimentation conditions and in sh
flows. Numerous comparisons with the experimental d
have been carried out.

At the same time, such approach entails little attention
the internal structure of colloidal aggregates. The sim
process of aggregation of molecules and small particle
form clusters is a central problem in many fields of appl
sciences; examples are coagulated aerosols, chemical
cipitation from a supersaturated matrix, growing cryst
from a supercooled melt, and others. The aggregates for
in all cases have extremely complicated multibranched fo
like dendrites and are called ‘‘fractal clusters.’’ Advanc
methods of numerical simulations@5–8# have demonstrated
that in such structures the angle averaged concentrationw of
particles in a cluster depends on the distancer to the formal
cluster center according to the power law:w(r );r df23 @for
three-dimensional~3D! clusters#. The power exponentdf is
called ‘‘fractal cluster dimension’’ and its determination is
key problem in large number of computer and theoreti
studies on evolution of fractal clusters@5–14#.

Computer analysis, however, entails a number of subs
tial drawbacks while applying to colloid aggregation. In fa
it is impossible to simultaneously simulate the diffusion m
tion of large number of particles in colloidal system. Mor
over, it is quite difficult to trace the dependence of clus
structure on specific physicochemical conditions that are
alized in a colloid. Therefore, it is important to develop t
analytical models of aggregation process in colloidal disp
sions, combining the possibility of obtaining information o
the spatial structure of separate clusters with the determ
tion of principles of evolution of an aggregate ensemb
This paper is devoted to the development of a correspon
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model of the growth of a separate aggregate forming du
the attachment of single particles.

Unlike the known theoretical models of fractal cluste
such as: the diffusion-limited aggregation~DLA ! mean-field
theories @5,13,14#; the probability scaling approache
@10,11#; the ‘‘branched growth’’ models@12# and others, we
do not study detailed peculiarities of the fractal structure
colloidal aggregates. Our model does not contain any s
gestions on the internal aggregate structure, and we are
terested only in an averaged description of the latter one.
take into account that the particle diffusion inside the agg
gate and the combination/recombination processes are c
plicated by the presence of the excluded volume. Due to
very slow diffusion motion of colloidal particles, we analyz
the conditions when the aggregate growth is limited by
diffusional transport of particles to the aggregate. In this c
the balance between the internal combination/recombina
processes have to be established. The main physical res
that in such conditions the growing aggregate is charac
ized by the power dependence of the aggregated particle
centrationw on the spatial coordinate, that is like a fract
cluster. The analytically determined value of the fractal
mensiondf52.5 is independent of physical and chemic
properties of colloidal system. This universal value is clos
coincident with the results of experimental studies@15–19#
and with the fractal dimension of classical DLA regime.

The partial differential model may be formulated on t
basis of coexisting interpenetrating media conception un
the following assumptions.

~1! All colloidal particles are divided in two main classe
the aggregated particles, united into the cluster skeleton,
the ‘‘free’’ particles inside and outside the aggregate volum
The cluster structure is described by the volume concen
tion w(t,r ) of aggregated particles, coexisting with th
‘‘free’’ particles of n(t,r ) concentration inside the aggrega
volume. Outside the aggregate only the ‘‘free’’ particles e
ist with the concentrations(t,r ). Due to interparticle bonds
the hydrodynamic mobility of aggregatedw particles is ne-
glected as compared with the diffusional motion of ‘‘free’’n
particles. We assume the angle averaged situation. So, a
concentrations depend only on the distancer from the aggre-
gate center.
©2001 The American Physical Society03-1
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~2! The aggregate volume is formally bounded by t
sphere~radiusS) passing over the outermost particle of a
gregate skeleton. The boundary motionS(t) is limited by the
rate of diffusional transport of ‘‘free’’ particles from the bul
of colloid to the formal aggregate surface.

~3! A diluted colloidal system is considered. Outside t
aggregate the particle concentrations(t,r ) is small enough,
so the interparticle interaction is negligible. The evolution
spontaneously formed aggregate is dependent on the kin
of attachment of ‘‘free’’ particles to the aggregate skeleto
The probability of such attachment is proportional to t
aggregated particle concentration and is sufficiently large
comparison with the probability of single particle-partic
coagulation. The attachment is supposed to be reversible
the recombination process is also taken into account
should be pointed out that the recombination probability m
be very small, but this process always takes place in
colloids.

~4! Inside the aggregate thew andn particles are consid
ered as the coexisting interpenetrating media. The par
attachment and breaking to/from the aggregate are co
nient to describe with the help of nonlinear mass-excha
terms in diffusion equation.

According to these assumptions the diffusion fluxj of n
particles inside the aggregate is controlled by inhomoge
ities of chemical potentialm:

j5bn“m, m5kT lnS n

12w/wm
D , ~1!

where b stands for the particle hydrodynamic mobilit
While defining the chemical potentialm we assume that the
particle-particle coagulation is resulted by the presence
narrow and deep interparticle energy minimum. The narro
ness of this minimum allows us to neglect the interparti
interaction up to the particle-particle contact, after tha
single ‘‘free’’ particle transfers to a skeleton one. At th
same time, the aggregated particles occupy a volume
cluded for the ‘‘free’’ particles. The last condition leads
the dependence of chemical potentialm on the concentration
w. We use the simplest van der Waals approximation~1!,
wherewm stands for the random, close packing concentrat
(wm;0.420.6).

Hence, the diffusion equations for the ‘‘free’’ particle
take the form

]n

]t
5DS“F S 12

w

wm
D“S n

12wwm
D G D2

]w

]t
, 0<r ,S~ t !,

~2!

]s/]t5DDs, r .S~ t !, s~`!5s` , D5bkT.
~3!

The last term in Eq.~2! has the mass-exchange meani
and describes the evolution of aggregate structure. We
sume that the aggregation kinetics is defined by the lo
probabilities of the attachment of ‘‘free’’ particles to the a
gregate skeleton and the breaking of particles from the
04140
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gregate, complicated by the presence of interparticle bo
between the aggregated particles,

]w

]t
5anw2bw~wm2w!, a,b'const, 0<r ,S~ t !.

~4!

The local kinetic coefficientsa andb evidently depend on
chemical and physical properties of colloidal system. Of
great importance is the structure of the last term in Eq.~4!
~recombination!. The number of recombined particles is pr
portional to the number of aggregated particles in a unit v
ume, that is, the last term is proportional tow. On the other
hand, the recombination probability should be a decreas
function of the number of interparticle bonds and should
dependent on the presence of the free volume in local vi
ity of the aggregated particle. In close packing regionw
'wm) the recombination should tend to be zero. We ha
used the simplest dependence;w(wm2w) in Eq. ~4! to take
these assumptions into account.

The following conditions would be fulfilled at the aggre
gate boundaryS(t).

~1! The continuation of chemical potentials of ‘‘free’’ par
ticles

lnS n

12w/wm
D5 ln s, r 5S~ t !. ~5!

~2! The mass balance equation

D
]s

]r
2DS 12

w

wm
D ]

]r S n

12w/wm
D5~n1w2s!

dS

dt
,

r 5S~ t !. ~6!

~3! The boundary motion equation

w
dS

dt
5n@asw2bw~wm2w!#, r 5S~ t !. ~7!

wheren is the length dimension coefficient, which may b
considered approximately to be equal to the particle rad
Hence, the aggregate boundary is determined by the bal
between the diffusional transport of particles and the kine
of aggregation.

The developed model represents the system of nonlin
partial differential equations complicated by the presence
unknown moving boundary. It is well known that the tim
relaxation of solution of mentioned class of partial proble
is determined by the time dependence of moving bound
S(t) with the character timetS5S/(dS/dt). The time evo-
lution of aggregate structure is controlled by the kine
equation~4!, the solution of which is characterized by th
aggregation timeta51/a. In the case of sufficiently large
cluster size and slow growth we should consider the stea
state regime of aggregation kinetics:ta!tS , ]w/]t'0. It
means that the internal balance between the combina
recombination processes is established. In order to exp
the solution it is convenient to introduce the functionr
5n/(12w/wm), standing for the ‘‘free’’ particle concentra
3-2
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tion defined over the volume, which is not occupied by a
gregated particles. Thus, the kinetic equation~4! takes the
form

]w

]t
5awS 12

w

wm
D ~r2K !'0, K5

b

a
wm!1,

w~ t,r 50!5wm . ~8!

It is easy to see that two kinds of solution of the mod
~1!–~8! exist. The first one represents the homogeneous
gregate ‘‘core’’ ~HC!,

w~r !5wm , r~S!5s~S!5
Ds`

D1anwmS
,

dS

dt
5

anDs`

D1anwmS
. ~9!

In this case the aggregate structure is similar to liq
drops and the aggregates of such kind arise during the p
separation of colloids@2#.

The second kind of solution is characterized by the pow
dependence of concentrationw(r ) and, thus, resembles
fractal cluster~FC!,

w~r !5AwmD~s`2K !

anKr
, r~r !5K5s~S!,

dS

dt
5ADanK

wm

~s`2K !

S
. ~10!

Here we use the steady-state approximation]s/]t'0 for
Eq. ~3!. This is valid only in the case, when the charac
diffusion timetD5S2/D is much less than the growth tim
tS , that evidently follows from Eqs.~9! and ~10!.

Analyzing the stability of solutions we have to take in
account that for mentioned class of partial models this
bility is totally dependent on the boundary growth rates.
similar situation, for example, takes place in the processe
unidirectional solidification of melts. It should be noted th
we do not consider the instabilities of branches in DLA clu
ters. Our approach considers on average all the inhomog
ities in the spatial displacement of skeleton particles. Fig
1 shows the dependence of growth rate on the aggregate

FIG. 1. Character dependence of the growth rate on the ag
gate size, solid curve—stable regimes, dashed curve—unstable
growth rate.
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Analyzing the growth conditions we come to the conclusi
that for the aggregate size of radii 0,S(t),R0, the HC~9!
grows more rapidly. Consequently, this kind of solution mu
be stable and more probable. Otherwise, the aggre
evolves as FC~10! for the larger sizesS(t).R0. The
changeover radiusR0 is equal to

R05
D

naK

s`2K

wm
. ~11!

The evolution of the boundary value of ‘‘free’’ particl
concentrations(r 5S) is presented on Fig. 2. The chang
over of the regimes HC and FC also takes place atS(t)
5R0. So, for the large aggregates@S(t).R0# we get the
following solution for the aggregate structure~see Fig. 3!.
The aggregate contains the central dense core and the
rounding zone, in which the aggregate becomes more
more loose. The point is that inside this loose region
aggregated particle concentrationw decreases as a powe
function,

w~r !5wm~R0 /r !1/2, R0<r<S. ~12!

Thus, the fractal cluster dimensiondf is obtained to be
equal to the universal valuedf52.5 and is independent o
the physical and chemical parametersa,b,D,s` ,wm ,n of
colloidal system. This value is very close to the experimen
results:df52.5660.3 for IgG aggregates@15#; 2.5260.05
@16# and 2.460.1 @17# for quartz particles; 2.3260.05 for
calcium carbonate particles@18#; 2.5 for aggregates of por
phyrins@19#. Our result is also very close to the known res
of DLA model df52.5160.06 @5,6# and df52.49560.005
@8# for 3D clusters. It should be noted that the present so
tion is valid only in the limit of very ‘‘slow’’ aggregate

e-
C

FIG. 2. Evolution of the boundary value of ‘‘free’’ particle con
centration with the aggregate growth.

FIG. 3. Radial dependence of the aggregated particle conce
tion.
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growth, that istS@ta ,tD anddS/dt!aS,D/S. So, the so-
lution ~8!–~12! represents the zero-order perturbation o
the small parameter (S/D)(dS/dt)!1, standing for the di-
mensionless aggregate growth rate. With the help
asymptotic methods it should be possible to find out the fi
order perturbation. The last one will result in small variatio
of df over the value 2.5.

In conclusion, we have discussed the partial differen
model describing the growth and the evolution of intern
structure of a separate colloidal aggregate. The model
dicts analytically the power spatial behavior of the agg
gated particle concentration according to the fractal clu
properties. The fractal dimensiondf52.5 is found to be in-
dependent on the physical and chemical characteristic
colloidal system. It is important to note that unlike the DL
approach our results are devoted to the situation when
internal combination/recombination balance is establish
r-
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The point is that this regime of aggregate evolution is ch
acterized by the universal value of fractal dimension coin
dent with the same one for DLA regime.

By using the results of the model on aggregate inter
structure and growth rate, the kinetics of colloid aggregat
may be investigated under condition when both the agg
gate distribution over size and the particle balance law
colloid will be taken into account. The model is also use
for the analysis of many problems of applied sciences, w
the processes of cluster formation and growth play a sign
cant role.
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