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Internal structure of colloidal aggregates
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A nonlinear model of diffusion-limited growth of three-dimensional colloidal aggregate has been developed.
The conditions of internal combination/recombination balance has been considered. Obtained solution shows
that the aggregate contains the central dense core and the surrounding loose region, in which the aggregated
particle concentration decreases as a power function, according to the fractal cluster properties. The fractal
dimensiond; has been found to be independent on physical and chemical properties of colloidal system. The
obtained universal valué;=2.5 is in a good agreement with the known experimental and numerical results.
The model may be useful for the analysis of a wide class of aggregation phenomena.
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Problems of aggregative stability of colloids and kineticsmodel of the growth of a separate aggregate forming due to
of aggregation represent one of the basic topics in colloidhe attachment of single particles.
science. Traditional approaches to the theoretical analysis of Unlike the known theoretical models of fractal clusters,
aggregation processes go back to the Smoluchowski’'s clasuch as: the diffusion-limited aggregatiddLA) mean-field
sical mode[1] and are based on solution of system of kinetictheories [5,13,14; the probability scaling approaches
equations of coagulation. A lot of papers concerning the ang-10,11]; the “branched growth” model§12] and others, we
lytical and numerical studies of the Smoluchowski kineticdo not study detailed peculiarities of the fractal structure of
system are availablésee, for example[,2—4]). Exact solu-  colloidal aggregates. Our model does not contain any sug-
tions have been found for the constant coagulation kernebestions on the internal aggregate structure, and we are in-
and the self-similar behavior has been analyzed for the varierested only in an averaged description of the latter one. We
ous dependencies of aggregation kernels on aggregate sizegce into account that the particle diffusion inside the aggre-
including those under sedimentation conditions and in shegjate and the combination/recombination processes are com-
flows. Numerous comparisons with the experimental datdyjicated by the presence of the excluded volume. Due to the
have been came_d out. . . very slow diffusion motion of colloidal particles, we analyze
o o L e dne condiions e th aggreate rowt s fmied by e
process of aggregation of molecules and sméll particles tﬁqlffusmnal transport of par.t|cles to the aggrggate. In th|§ case
form clusters is a central problem in many fields of applied e balance between the mtgrnal comb|na'§|on/rec_c)mb|naﬂoq

‘ocesses have to be established. The main physical result is

sciences; examples are coagulated aerosols, chemical pt Ci h diti th . te is ch ;
cipitation from a supersaturated matrix, growing crystals. 2" N Such conditions the growing aggregate Is character-

from a supercooled melt, and others. The aggregates formeged Py the power dependence of the aggregated particle con-
in all cases have extremely complicated multibranched form§entrationg on the spatial coordinate, that is like a fractal
like dendrites and are called “fractal clusters.” Advancedcluster. The analytically determined value of the fractal di-
methods of numerical simulatioi5—8] have demonstrated mensiond;=2.5 is independent of physical and chemical
that in such structures the angle averaged concentratioh ~ Properties of colloidal system. This universal value is closely
particles in a cluster depends on the distante the formal ~ coincident with the results of experimental studjés—19
cluster center according to the power lag(r)~rd% 3 [for ~ and with the fractal dimension of classical DLA regime.
three-dimensional3D) cluster§. The power exponerd; is The partial differential model may be formulated on the
called “fractal cluster dimension” and its determination is a basis of coexisting interpenetrating media conception under
key problem in large number of computer and theoreticathe following assumptions.
studies on evolution of fractal clustefis—14]. (1) All colloidal particles are divided in two main classes:
Computer analysis, however, entails a number of substarithe aggregated particles, united into the cluster skeleton, and
tial drawbacks while applying to colloid aggregation. In fact, the “free” particles inside and outside the aggregate volume.
it is impossible to simultaneously simulate the diffusion mo-The cluster structure is described by the volume concentra-
tion of large number of particles in colloidal system. More-tion ¢(t,r) of aggregated particles, coexisting with the
over, it is quite difficult to trace the dependence of cluster‘free” particles of n(t,r) concentration inside the aggregate
structure on specific physicochemical conditions that are revolume. Outside the aggregate only the “free” particles ex-
alized in a colloid. Therefore, it is important to develop theist with the concentratiowr(t,r). Due to interparticle bonds,
analytical models of aggregation process in colloidal disperthe hydrodynamic mobility of aggregates particles is ne-
sions, combining the possibility of obtaining information on glected as compared with the diffusional motion of “fren”
the spatial structure of separate clusters with the determingarticles. We assume the angle averaged situation. So, all the
tion of principles of evolution of an aggregate ensembleconcentrations depend only on the distané®m the aggre-
This paper is devoted to the development of a correspondingate center.
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(2) The aggregate volume is formally bounded by thegregate, complicated by the presence of interparticle bonds
sphere(radius,) passing over the outermost particle of ag- between the aggregated particles,
gregate skeleton. The boundary motib(t) is limited by the 5
rate of diffusional transport of “free” particles from the bulk ~ °¢ _ _ _ .
of colloid to the formal aggregate surface. gt ane be(em=e), ab~const, O<r<x(t).

(3) A diluted colloidal system is considered. Outside the (4)
aggregate the particle concentratie(t,r) is small enough,
so the interparticle interaction is negligible. The evolution of
spontaneously formed aggregate is dependent on the kineti , X X
of attachment of “free” particles to the aggregate skeleton Jr€at importance is the structure of the last term in @g.
The probability of such attachment is proportional to the(rec_ombmanom The number of recombmeo! partl_cles IS pro-
aggregated particle concentration and is sufficiently large ifPortional to the number of aggregated particles in a unit vol-
comparison with the probability of single particle-particle YMe: that is, the last term is proportional¢o On the other
coagulation. The attachment is supposed to be reversible arﬁnd: the recombination probability should be a decreasing
the recombination process is also taken into account. IUnction of the number of interparticle bonds and should be
should be pointed out that the recombination probability may€Pendent on the presence of the free volume in local vicin-
be very small, but this process always takes place in redP of the aggregated particle. In close packing regian (
colloids. ~ ¢, the recombination should tend to be zero. We have

(4) Inside the aggregate the andn particles are consid- USed the simplest dependene@(en— ¢) in Eq. (4) to take
ered as the coexisting interpenetrating media. The particld1€S€ assumptions into account. _
attachment and breaking to/from the aggregate are conve- The following conditions would be fulfilled at the aggre-
nient to describe with the help of nonlinear mass-exchang§ate boundarg (t).

The local kinetic coefficienta andb evidently depend on
ggemical and physical properties of colloidal system. Of the

terms in diffusion equation. (1) The continuation of chemical potentials of “free” par-
According to these assumptions the diffusion fjugf n ticles
particles inside the aggregate is controlled by inhomogene- n
ities of chemical potentigk: In(—) =lno, r=X(t). (5)
1-¢lonm
- _ n (2) The mass balance equation
j=BnVu, ,u—kTIn(l_ ; m). (N
5 @ n )_ N dx

where B stands for the particle hydrodynamic mobility. ar @m/ I\ 1—olpn =(nte¢—o) dt’
While defining the chemical potential we assume that the
particle-particle coagulation is resulted by the presence of r=2(t). (6)

narrow and deep interparticle energy minimum. The narrow- ] .
ness of this minimum allows us to neglect the interparticle  (3) The boundary motion equation
interaction up to the particle-particle contact, after that a ds
single “free” particle transfers to a skeleton one. At the p—=v[ace—be(en—e)], r=3(t). 7
same time, the aggregated particles occupy a volume ex- dt
cluded for the “free” particles. The last condition leads to
the dependence of chemical potenjiabn the concentration
¢. We use the simplest van der Waals approximatibn
wheree,, stands for the random, close packing concentratio
(¢m~0.4—-0.6).

Hence, the diffusion equations for the “free” particles
take the form

an
ool

where v is the length dimension coefficient, which may be
considered approximately to be equal to the particle radius.
rﬂence, the aggregate boundary is determined by the balance

etween the diffusional transport of particles and the kinetics
of aggregation.

The developed model represents the system of nonlinear
partial differential equations complicated by the presence of
unknown moving boundary. It is well known that the time
(1_ i) V( N )D _oe O<r<3(t) relaxation of solution of mentioned class of partial problems

Pm 1-oenm at’ ' is determined by the time dependence of moving boundary
(2)  3(t) with the character times=3./(d3/dt). The time evo-
lution of aggregate structure is controlled by the kinetic
dolot=DAo, r>3(t), o(»)=0,, D=pKT. equation(4), the solution of which is characterized by the
(3)  aggregation timer,=1/a. In the case of sufficiently large
cluster size and slow growth we should consider the steady-

The last term in Eq(2) has the mass-exchange meaningstate regime of aggregation kineticg;<7s, dg/dt=~0. It
and describes the evolution of aggregate structure. We asaeans that the internal balance between the combination/
sume that the aggregation kinetics is defined by the localecombination processes is established. In order to explain
probabilities of the attachment of “free” particles to the ag- the solution it is convenient to introduce the functipn
gregate skeleton and the breaking of particles from the ag=n/(1- ¢/ ¢,,), standing for the “free” particle concentra-

ot
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FIG. 1. Character dependence of the growth rate on the aggre- FIG. 2. Evolution of the boundary value of “free” particle con-
gate size, solid curve—stable regimes, dashed curve—unstable Hegntration with the aggregate growth.
growth rate.

Analyzing the growth conditions we come to the conclusion
tion defined over the volume, which is not occupied by ag-that for the aggregate size of radi< (t) <R,, the HC(9)
gregated particles. Thus, the kinetic equat{dh takes the grows more rapidly. Consequently, this kind of solution must
form be stable and more probable. Otherwise, the aggregate

evolves as FC(10) for the larger sizes:(t)>R,. The

K b h i i | t
—(P=a<p -9 (p—K)=0, K=o <1, changeover radiuR, is equal to
ot ®m a
Ro=— T K 11
e(t,r=0)=en. (€S) ° vaK op 1y

It is easy to see that two kinds of solution of the models The evolution of the boundary value of “free” particle
(1)—(8) exist. The first one represents the homogeneous agsoncentrations(r =3) is presented on Fig. 2. The change-
gregate “core” (HC), over of the regimes HC and FC also takes place ét)
=R,. So, for the large aggregaté (t)>R,] we get the

e(N=¢m pS)=c(3)= Do, , following solution for_the aggregate structueee Fig. 3.
D+aven The aggregate contains the central dense core and the sur-
rounding zone, in which the aggregate becomes more and
dx _arDo. 9 more loose. The point is that inside this loose region the
dt D+aveyn’ ©) aggregated particle concentratian decreases as a power
function,
In this case the aggregate structure is similar to liquid
drops and the aggregates of such kind arise during the phase o(N)=en(Ry/NY2 Ry<r<3. (12

separation of colloid§2].
The second kind of solution is characterized by the power Thus, the fractal cluster dimensiat} is obtained to be
dependence of concentratiap(r) and, thus, resembles a equal to the universal valug;=2.5 and is independent on

fractal clustenFC), the physical and chemical parameterd,D,o0.,,¢my,v Of
colloidal system. This value is very close to the experimental
emD (0 —K) results:d;=2.56+ 0.3 for IgG aggregatefl5]; 2.52+0.05
o=\ "y  PN=K=0(3), [16] and 2.4-0.1[17] for quartz particles; 2.320.05 for
calcium carbonate particldd8]; 2.5 for aggregates of por-
ds DavK (o..—K) phyrins[19]. Our result is also very close to the known result
i o 3 (10)  of DLA model d;=2.51+0.06 [5,6] and d;=2.495+0.005

[8] for 3D clusters. It should be noted that the present solu-

Here we use the steady-state approximationdt~0 for tion is valid only in the limit of very “slow” aggregate

Eqg. (3). This is valid only in the case, when the character

diffusion time rp=22/D is much less than the growth time o)

7s , that evidently follows from Eqg9) and (10). 0.,
Analyzing the stability of solutions we have to take into

account that for mentioned class of partial models this sta-

bility is totally dependent on the boundary growth rates. A

similar situation, for example, takes place in the processes of

unidirectional solidification of melts. It should be noted that

we do not consider the instabilities of branches in DLA clus-

ters. Our approach considers on average all the inhomogene-

ities in the spatial displacement of skeleton particles. Figure FIG. 3. Radial dependence of the aggregated particle concentra-

1 shows the dependence of growth rate on the aggregate sizi@n.

0 R, > r
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growth, that isrs> 7., 7p andd3/dt<a ,D/3. So, the so- The point is that this regime of aggregate evolution is char-
lution (8)—(12) represents the zero-order perturbation overacterized by the universal value of fractal dimension coinci-
the small parameter3(/D)(dX/dt)<1, standing for the di- dent with the same one for DLA regime.

mensionless aggregate growth rate. With the help of By using the results of the model on aggregate internal
asymptotic methods it should be possible to find out the firststructure and growth rate, the kinetics of colloid aggregation
order perturbation. The last one will result in small VariationSmay be investigated under condition when both the aggre-
of d; over the value 2.5. o _ gate distribution over size and the particle balance law in

In conclusion, we have discussed the partial differentiako|ioid will be taken into account. The model is also useful

model describing the growth and the evolution of internalgy, the analysis of many problems of applied sciences, when

structure of a separate colloidal aggregate. The model prepg rocesses of cluster formation and growth play a signifi-
dicts analytically the power spatial behavior of the aggre-

. . . cant role.

gated particle concentration according to the fractal cluster

properties. The fractal dimensiah=2.5 is found to be in- The present research was carried out within the financial
dependent on the physical and chemical characteristics &fupport of RFBR Grant Nos. 00-02-17731, 01-02-16072, 01-
colloidal system. It is important to note that unlike the DLA 01-00058, and 01-02-96430ural and RME Grant No. E0O-
approach our results are devoted to the situation when th®.2-210. The research was also made possible in part by

internal combination/recombination balance is establishedCRDF, Award No. REC-005.
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